De-mystifying partial breast radiotherapy

Is less really less?

Philip Poortmans, MD, PhD
I have no conflicts of interest
De-mystifying PBI: is less really less?

1. Introduction

2. Side-effects

3. Discussion

4. Conclusions
Demystifying Partial Breast Irradiation
Part 1: Why and how to do it?
De-mystifying partial breast radiotherapy: does it work and who should have it?

Charlotte Coles

UK Interdisciplinary Breast Cancer Symposium 2020
De-mystifying PBI: is less really less?

1. Introduction

2. Side-effects

3. Discussion

4. Conclusions
Is PBI really less: *Side-effects*

Warning signals

EDITORIAL

REPORTS OF UNEXPECTED LATE SIDE EFFECTS OF ACCELERATED PARTIAL BREAST IRRADIATION—RADIOBIOLOGICAL CONSIDERATIONS

SØREN M. BENTZEN, PH.D., D.SC.,* AND JOHN R. YARNOLD, M.D., FRCR.†

Three reports: HypoF: 3.85 Gy in 10 F, twice daily (minimum 6h interval), 5 consecutive days

1) Chen et al.: „outcomes appear comparable“
2) Hepel et al.: „remarkably high moderate to severe late effects“
3) Jagsi et al.: „HypoF may be suboptimal...........“
Is PBI really less: *Side-effects*

Warning signals

UNACCEPTABLE COSMESIS IN A PROTOCOL INVESTIGATING INTENSITY-MODULATED RADIOTHERAPY WITH ACTIVE BREATHING CONTROL FOR ACCELERATED PARTIAL-BREAST IRRADIATION

*Hepel, *IJROBP* 2009;75:1290-96 (3D-CRT)*
*Jagsi, *IJROBP* 2010;76:71-78 (IMRT)*
Is PBI really less: *Side-effects*

Warning signals

Protocol NSABP B-39/ RTOG 0413
- Phase III, conv. RT vs. APBI
- 2 x 3.85 Gy/d
- 38.5 Gy, 5 days
- ≥ 6hs interval

Fibrosis:
Grade 2-4: 25 % (1.5 years)
Grade 3-4: 8 %

Hepel, IJROBP 2009;75:1290-96 (3D-CRT) Jagsi, IJROBP 2010;76:71-78 (IMRT)
Is PBI really less: Side-effects

Warning signals

WBI

<table>
<thead>
<tr>
<th>Quality</th>
<th>No. of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>68 (42%)</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>74 (45%)</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>16 (10%)</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>6 (4%)</td>
<td></td>
</tr>
<tr>
<td>Fair + poor</td>
<td>22 (13%)</td>
<td>13.4% (p<.001)</td>
</tr>
</tbody>
</table>

5 Years

APBI

<table>
<thead>
<tr>
<th>Quality</th>
<th>No. of Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>44 (26%)</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>71 (42%)</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>49 (29%)</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>7 (4%)</td>
<td></td>
</tr>
<tr>
<td>Fair + poor</td>
<td>56 (33%)</td>
<td>32.8%</td>
</tr>
</tbody>
</table>

5 Years

5 year cosmetic evaluation assessment on 335 / 2,135 patients

Twelve-year clinical outcomes and patterns of failure with APBI versus WBI: Results of a matched-pair analysis

Chirag Shah, John Vito Antonucci, John Ben Wilkinson, Michelle Wallace, Mihai Ghilezan, Peter Chen, Kenneth Lewis, Christina Mitchell, Frank Vicini*

Department of Radiation Oncology, William Beaumont Hospital, MI, USA

Is PBI really less: *Side-effects*

Real life data

Results @ 5 years:
- more subsequent mastectomy (4.0% vs. 2.2%)
- more acute complications:
 - hospitalization (9.6% vs. 5.7)
 - infection (8.1% vs. 4.5)
- more late complications:
 - rib fracture (4.2% vs. 3.6% in WBI)
 - fat necrosis (9.1% vs. 3.7%)
 - breast pain (14.9% vs. 11.7%)
- less pneumonitis (0.1% vs. 0.8%).

All $p<0.001$

Is PBI really less: *Side-effects*

More recent prospective clinical trials
Intensity modulated partial breast radiotherapy (IMPORT) for women with early breast cancer: First analysis of local relapse (CRUK/06/003)

Dr Charlotte Coles

Results: Effect on healthy tissues – clinician-reported

<table>
<thead>
<tr>
<th></th>
<th>Whole N=674</th>
<th>Reduced N=674</th>
<th>Partial N=670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with moderate/marked side effects (%)</td>
<td>134 (20)</td>
<td>108 (16)</td>
<td>92 (14)</td>
</tr>
<tr>
<td>5 year event-free for mod/marked side effects (95% CI)</td>
<td>72.1% (66.0 - 77.3)</td>
<td>78.9% (74.2 - 82.8)</td>
<td>80.9% (75.8 - 85.0)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.77 (0.60, 0.99)</td>
<td>0.68 (0.52, 0.89)</td>
<td></td>
</tr>
<tr>
<td>Log rank p-value</td>
<td>p=0.042</td>
<td>p=0.004</td>
<td></td>
</tr>
</tbody>
</table>

- Reduced long term side effects for Partial & Reduced RT
- Greatest improvement with Partial RT

Courtesy Coles C et al.
First results from the clinically controlled randomized DBCG PBI trial

BV Offersen¹, MS Thomsen¹, HM Nielsen¹, EH Jacobsen², M Berg², MH Nielsen³, E Lorenzen³, L Stenbygaard⁴, I Jensen⁴, AN Petersen⁵, M Josipovic⁵, M-B Jensen⁶, J Overgaard⁷, on behalf of the DBCG RT Committee

¹Dept Oncology Aarhus, ²Dept Oncology Vejle, ³Dept Oncology Odense, ⁴Dept Oncology Aalborg, ⁵Dept Oncology, Rigshospitalet, ⁶DBCG, ⁷Dept Expt Clin Oncology Aarhus, Denmark
Patient satisfaction with treated breast

<table>
<thead>
<tr>
<th></th>
<th>Whole breast</th>
<th>%</th>
<th>Partial breast</th>
<th>%</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 0 (poor)</td>
<td>4</td>
<td>1.1</td>
<td>1</td>
<td>0.3</td>
<td>0.72</td>
</tr>
<tr>
<td>Grade 1 (fair)</td>
<td>18</td>
<td>5.1</td>
<td>20</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Grade 2 (good)</td>
<td>178</td>
<td>82.9</td>
<td>179</td>
<td>82.0</td>
<td></td>
</tr>
<tr>
<td>Grade 3 (excellent)</td>
<td>113</td>
<td></td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4 (unanswered)</td>
<td>38</td>
<td>10.8</td>
<td>43</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>708</td>
<td>351</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 0 (poor)</td>
<td>1</td>
<td>0.6</td>
<td>4</td>
<td>2.3</td>
<td>0.12</td>
</tr>
<tr>
<td>Grade 1 (fair)</td>
<td>10</td>
<td>5.5</td>
<td>7</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Excellent/good</td>
<td>78</td>
<td>91.2</td>
<td>88</td>
<td>92.5</td>
<td></td>
</tr>
<tr>
<td>Grade 4 (unanswered)</td>
<td>5</td>
<td>2.8</td>
<td>2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>181</td>
<td></td>
<td>172</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose and background

To report interim **cosmetic** and **toxicity** results in a subgroup of patients enrolled in IRMA trial

IRMA trial (NCT 01803958)

Multicentric randomized trial (Italy, Netherlands, Spain, Switzerland, Israel)

Non inferiority study (APBI vs WBI)

Primary Objective

Local control (incidence of ipsilateral recurrences)

Secondary Objectives

OS, Cosmesis, Toxicity

https://clinicaltrials.gov/ct2/show/NCT01803958 www.irmatrial.it
Conclusion

APBI with 3D-CRT resulted in *better acute toxicity*, *similar late toxicity* and *good/excellent cosmetic results* compared with standard WBI.

Additional follow-up is needed to confirm these results.

SUBMITTED FOR LBA ESTRO 2020!!!!
Is PBI really less: *Side-effects*

More recent prospective clinical trials

Florence trial:

- EORTC QLQ-C30 scale & QLQ-BR23 module
- APBI \rightarrow improved short-term and 2-year HRQoL
 - Body image perception and future perspective: $p = 0.0001$
 - Breast and arm symptoms: $p < 0.01$

Is PBI really less: *Side-effects*

More recent prospective clinical trials

Late toxicity and cosmesis after APBI with brachytherapy vs WBI – 5-year results of the GEC-ESTRO phase III trial

Study chairmen: Vratislav Strnad & Csaba Polgár

Conclusions

• 5-year toxicity profiles and cosmetic results were similar in patients treated with BCS followed by either APBI with interstitial brachytherapy or conventional WBI

• Significantly fewer grade 2-3 late skin side-effects after APBI with interstitial brachytherapy

De-mystifying PBI: is less really less?

1. Introduction

2. Side-effects

3. Discussion

4. Conclusions
Is PBI really less: Discussion

Radiobiology
Is PBI really less: Discussion

Radiobiology

„The challenge is to quantify the effect of reduced volume when applying WBI dose response date to APBI“

➢ Volume effect?

➢ Dose-volume-parameters?
Is PBI really less: Discussion

Radiobiology

Overdose?

- Acceleration 2 F/d, fraction size, interval of 6h to short?
- Dependent on α/β and recuperation “half times”: 65-68 Gy!!!!!
- Resulting late effects (note: no increase in acute toxicity was noted!)

Hepel, IJROBP 2009;75:1290-96 (3D-CRT) Jagsi, IJROBP 2010;76:71-78 (IMRT)
Retrospective study of LDR brachytherapy volumes as boost: 4-fold increase in risk of fibrosis for each 100 cm³ increment in boost volume → very steep volume response.

Is PBI really less: Discussion

Radiobiology

The importance of incomplete repair is underestimated with this type of APBI, expressing a strong dose-volume effect.

The toxic events correlated clearly with several dose–volume parameters.
Is PBI really less: *Discussion*

Target volumes
Is PBI really less: Discussion

Target volumes

- Tumour
- Microscopic extension
- Region with microscopic extension, within 2 cm of primary tumour

✓ Radio-opaque wire (scar & palpable area) to guide.
✓ Pre-operative localisation of tumour (phys ex, imaging).
✓ Features visible on the planning CT: clips, surgical effects, ...

Is PBI really less: *Discussion*

Target volumes

Is PBI really less: *Discussion*

Target volumes

Primary tumour bed:

Representing original tumour site

\~ GTV

\neq surgical bed

\= virtual point

\neq CTV boost/APBI.

A lot of uncertainties!!!
Is PBI really less: Discussion

Target volumes

Target volume delineation of primary tumour bed:

- by dedicated RO’s
- no clips
- no seroma

Is PBI really less: Discussion

Target volumes - oncoplastic surgery
Is PBI really less: *Discussion*

Target volumes - oncoplastic surgery
Is PBI really less: *Discussion*

Target volumes - oncoplastic surgery

WS: Whole surgical Scar
ImTV: Imaging related Target Volume
ETB: Estimated Tumour Bed
CTV: Clinical Target Volume

Is PBI really less: Discussion

The missing link: preoperative RT?

Current Perspective

Preoperative breast radiation therapy: Indications and perspectives

S.V. Lightowlers a,*, L.J. Boersma b, A. Fourquet c, Y.M. Kirova c, B.V. Offersen d, P. Poortmans c, A.N. Scholten e, N. Somaiah f, C.E. Coles g

Is PBI really less: *Discussion*

The missing link: preoperative RT?

<table>
<thead>
<tr>
<th>Title</th>
<th>Type of study</th>
<th>Patient recruitment target</th>
<th>Study design</th>
<th>Primary endpoint</th>
<th>RT technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPBI-2</td>
<td>Phase III randomised trial</td>
<td>500 patients</td>
<td>Preoperative vs. postoperative accelerated partial breast irradiation</td>
<td>Cosmetic outcome, assessed by digital photographs, patient's questionnaires and specialist's questionnaires</td>
<td>Partial breast IMRT 28.5Gy in 5 fractions over 1 week</td>
</tr>
</tbody>
</table>

Table 2: Novel trials involving preoperative radiation therapy currently in the set up phase, or recruiting patients (footnote 1). *APBI, accelerated partial breast irradiation; **IMRT, intensity modulated radiation therapy; †DIEP, deep inferior epigastric perforator; ***SIB, simultaneous integrated boost.

Is PBI really less: *Discussion*

Preoperative APBI – PAPBI-1

- Multi-centric international phase II trial
- N=139/140 patients
- Feasibility of preoperative APBI done by external beam radiotherapy

Is PBI really less: *Discussion*

Preoperative APBI – PAPBI-1

Pre- vs. post:
Increased homogeneity in contouring

Van Der Leij F, Radiother Oncol 2014
Is PBI really less: Discussion

Preoperative APBI – PAPBI-1

RAPID trial

PAPBI trial

Role of removal of high dose irradiated volume?

De-mystifying PBI: is less really less?

1. Introduction

2. Side-effects

3. Discussion

4. Conclusions
Is PBI really less: **Conclusions**

Much variation between techniques

<table>
<thead>
<tr>
<th>Comparison of PBI techniques</th>
<th>3D CRT</th>
<th>Interstitial brachytherapy HDR, LDR, PDR</th>
<th>MammoSite</th>
<th>Target, 50 kV X-rays</th>
<th>IORT, electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage of target</td>
<td>Best</td>
<td>Variable</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Thickness of cavity wall irradiated</td>
<td>1–2 cm</td>
<td>Dose prescribed to 1 cm from surface of applicator</td>
<td>Dose prescribed to 1 mm from surface of applicator, 5–7 Gy 10 mm from applicator</td>
<td>Dose prescribed to 90% isodose line, 80% isodose at 13 mm (3 MeV)–24 mm (9 MeV)</td>
<td></td>
</tr>
<tr>
<td>Dose homogeneity</td>
<td>Best</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Sparing of normal breast / other organs</td>
<td>Least</td>
<td>Good</td>
<td>Best</td>
<td>Varies with location</td>
<td></td>
</tr>
<tr>
<td>Skin dose</td>
<td>Least</td>
<td>Least</td>
<td>Variable</td>
<td>Least (can shield)</td>
<td>Least</td>
</tr>
<tr>
<td>Technical feasibility for various size, shape or location of cavity</td>
<td>Suitable for virtually all cases</td>
<td>Not suitable if inadequate tissue or near axilla</td>
<td>Not suitable for large/irregular cavities, or at the periphery of the breast</td>
<td>Not suitable for tumors near brachial plexus/axilla or skin</td>
<td></td>
</tr>
<tr>
<td>Expertise required</td>
<td>Average</td>
<td>High</td>
<td>Average</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>Potential for wide spread use</td>
<td>Very good</td>
<td>Fair</td>
<td>Very good</td>
<td>Fair</td>
<td>Limited</td>
</tr>
<tr>
<td>Main drawback</td>
<td>Relatively higher dose to normal tissue and breathing motion</td>
<td>Adequacy of target coverage in some cases and wider applicability</td>
<td>Cavity shape and size. Although easy to use, stringent QA is required. Skin dose may be high</td>
<td>Very limited depth irradiated; cavity shape and size. Histology not available</td>
<td>Wider applicability. Histology not available. Based on quadrantectomy</td>
</tr>
</tbody>
</table>

TV def

+++ ++ --/- --- +/-

Is PBI really less: *Conclusions*

Much variation between techniques

<table>
<thead>
<tr>
<th>Intraoperative RT</th>
<th>Brachytherapy</th>
<th>External Beam Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Gy/1 fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(low energy X-rays 50 kV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELIOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Gy/1 fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3-12 MeV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINAC – based IORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4–20 MeV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEC-ESTRO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 Gy/8fr HDR,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.3 Gy/7fr HDR,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 Gy PDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSABP/RTOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 Gy/10fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5-10 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twice daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSABP/RTOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.5 Gy/10fr (5-10 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAPID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.5 Gy/10fr (5-8 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.5 Gy/10fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPORT-LOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 Gy/15fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 Gy/15fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLORENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Gy/5fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 Gy/10fr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIB – multicatheter brachy; B- balloon e.g., mammoSite

Slide courtesy O. Kaidar-Person
Technique not the other way around!
Is PBI really less: Conclusions

• TV delineation = challenge +++

• TV delineation + oncoplastic surgery = (challenge)²

• Close collaboration surgeons and RO = essential before, during and after surgery

• Discuss use of oncoplastic surgery: tool but not goal!
Is PBI really less: *Conclusions*

Finding the equilibrium between dose & volume

<table>
<thead>
<tr>
<th>Dose</th>
<th>Local control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractionation</td>
<td>Cosmetic</td>
</tr>
<tr>
<td>Volume</td>
<td>Convenience</td>
</tr>
</tbody>
</table>
Is PBI really less: Conclusions

The next challenge?

ExclUsive endocrine Therapy Or PBI (EUROPA)

ClinicalTrials.gov Identifier: NCT04134598

Phase 2-3 trial will open soon

Icro Meattini, Etienne Brain, Isacco Desideri, Marije Hamaker,

Orit Kaidar-Person, Matteo Lambertini, Guido Miccinesi, Nicola Russell,

Calogero Saieva, Luca Visani, Philip Poortmans, Lorenzo Livi
Eligible patients group
Women ≥70 years of age
cT1-2 cN0 breast cancer

BCS with or without SNB

pT1 pN0 invasive BC
Luminal A-like: ER+ (≥50%) and PgR+ (>20%), HER2-, Ki67 ≤20%

Signed informed consent

Randomization 1:1 stratified by age, G8 tool score, and Institution

Exclusive PBI
Exclusive ET (control)

Follow-up according to protocol

Is PBI really less: Conclusions
Is PBI really less: *Acknowledgements*

- Birgitte Offersen
- Icro Meattini
- Lorenzo Livi
- Orit Kaidar-Person
- Harry Bartelink
- Astrid Scholten
- Liesbeth Boersma
- Roberto Orecchia
- Marianne Aznar
- Sandra Hol
- Riccardo Audisio
- Etienne Brain
- Giovanni Frezza
- Bruno Meduri
- Charlotte Coles
- Sara Lightowlers
- Vratislav Strnad
- Csaba Polgár
- And many others!